
Topological Analysis of Open-Endedness in Video Games

L. B. Soros1,2,†, Nicholas Guttenberg2,†

1Barnard College, New York, NY, USA
2Cross Labs, Cross Compass Ltd., Tokyo, Japan

Abstract
This paper presents an automated methodology for analyzing specific properties of open-endedness in video games. We
focus specifically on the phenomenon of door-opening states that expand a possibility space once they are encountered. Our
analysis examines door-opening states both in terms of the physical properties of game levels and the cognitive abilities that
a player must learn in order to progress through the game. Finally, we demonstrate our methodology on the NES homebrew
game Blobquest.

Keywords
Video games, Open-endedness

1. Introduction
Juul (2002) divides games into two categories: games of
emergence and games of progression. Games of emer-
gence are games in which simple rules combine, leading
to variation. Games of progression are games in which
the player must perform a series of actions in order to
complete the game. Some games can combine features of
both emergence and progression – Juul cites Everquest
as an example of such a game because of its combina-
tion of Dungeons-and-Dragons-style rules and scripted
objective-based quests.
This paper is about games of progression examined

through the lens of open-endedness in the field of artifi-
cial life. We focus in particular on a mechanism called
a door-opening state, which expands a possibility space
once encountered. The main contribution of this pa-
per is an automated methodology for analyzing door-
opening states in video games. The results of such analy-
sis can reveal whether sequences of door-opening states
in games are linear (suggesting a simple and straightfor-
ward kind of progression) or branching (suggesting more
open-ended gameplay).
In this paper we will examine properties of open-

endedness in video games by exploring the phenomenon
of door-opening states in the video game BlobQuest (Fig.
1). We focus in particular on door-opening skills, mean-
ing new skills become possible for the agent that weren’t
previously possible when some other requisite ability is
acquired.

The Joint Workshop Proceedings of the 2022 Conference on Artificial
Intelligence and Interactive Digital Entertainment
†
These authors contributed equally.
Envelope-Open lsoros@barnard.edu (L. B. Soros); ngutten@gmail.com
(N. Guttenberg)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: BlobQuest. The player (green blob) must collect
rubies while avoiding obstacles such as the spiky balls. The
player can only move left and right until acquiring power-ups.
Here, collecting the purple power-up at bottom left will give
the player the ability to jump, which increases the number of
areas that are accessible to the player.

2. Background
According to Cook (2019) “the possibility space of a par-
ticular type of content (like aMinecraftworld) is the set of
all examples of that content we can imagine or describe”.
Possibility spaces are therefore a useful tool for thinking
about creative processes in both artificial and natural sys-
tems. Taylor (2019) notes that the concept of possibility
spaces is widely employed in particular when describ-
ing the products of evolutionary systems [4, 5, 6] and
presents a formalism describing how possibility spaces
are explored and expanded in such systems, specifically
those that are more or less open-ended. In particular,
Taylor notes the existence of door-opening states [7], the
discovery of which “open up an expanded space of new

mailto:lsoros@barnard.edu
mailto:ngutten@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


adjacencies”, referring perhaps to Kauffman’s (2003) the-
ory of an adjacent possible that is constantly expanding
and increasing the diversity of what can happen next.

Though Taylor explores these concepts in the context
of open-ended evolution, there is nothing in particular
that restricts their use to discussions of evolution; we
claim herein that they are useful concepts for discussing
open-ended systems in general, including video games.
It has been established by Bogost (2008) that “In a video
game, the possibility space refers to the myriad config-
urations the player might construct to see the ways the
processes inscribed in the systemwork”. In this paper, we
explore the concept of door-opening states in the physi-
cal and cognitive spaces explored during video game play.
Our eventual goal is to explore how open-ended various
video games are and to create a sort of tool that can be
used by designers for measuring the open-endedness of
their games.

3. Related Work
The problem of identifying bottleneck states in general
is an important problem in many research areas, and has
been a focus of reinforcement learning (RL) research in
particular. In the RL context, bottlenecks in an agent’s
observation space, for instance, might correspond to sub-
goals [10] or plan components [11]. However, in this
section we review only works pertaining to automated
bottleneck or state detection for for video games.

In Automatic Mapping of NES Games with Mappy [12],
linkedmaps of rooms in NES games are produced from in-
put playthroughs of games. These maps are constructed
by viewing the tiles on the screen as the game is being
(re-)played and stitching the tiles together to form a cohe-
sive map. To determine what is being shown on screen,
Mappy analyzes the data stored in the NES Picture Pro-
cessing Unit, which contains data about tilemaps, sprites,
and other game features that are drawn on the screen. To
determine whether the player has reached a transition
between two rooms, Mappy takes into account whether
the screen is scrolling and whether or not the player
has control of the game. The subsequent MappyLand
project [13] resulted in performance and quality of life
improvements.

While Mappy and MappyLand are in many ways simi-
lar to the work introduced in this paper, there are signifi-
cant differences. The most important difference is that
Mappy constructs a graph of the true physical game map,
while our method not only creates a graph of physical
states but also a map of cognitive/mental/ability bottle-
necks in agent play, as explained in the next section.

4. Methodology
One of the hypotheses in this work is that door-opening
states correspond to bottlenecks in the game state, mean-
ing there is some state that necessarily must be passed
through in order to access successive states. It is impor-
tant to note that there may be bottlenecks in the physical
game state and also bottlenecks in terms of a gameplay-
ing agent’s cognitive abilities; if there were a power-up
required to do something that would be a physical bottle-
neck, but not knowing how to do something is a mental
bottleneck. Additionally, some (but not all) bottlenecks
may be both physical and cognitive in nature. Figure 2
shows an example showing the difference between these
two kinds of bottlenecks.

Physical 
Bottlenecks

Ability 
Bottlenecks

Figure 2: Toy example of physical and ability/cognitive
bottlenecks. An imagined player starts in the middle room
andmust overcome physical and cognitive bottlenecks in order
to leave the room. The passage to the left only presents a
physical bottleneck because it doesn’t require any special
knowledge besides knowing how to walk to the left. The
passage to the right contains a wall that must be climbed over,
thus presenting a purely cognitive bottleneck (because the
player must learn or figure out how to climb). The upward
passage contains a pit that must be jumped over, presenting
both a physical and cognitive bottleneck.

The goal of our analysis is to automatically construct
a graph of physical and then mental door-opening states
from human gameplay. In this paper we present two
methods for automatically constructing the physical
graphs. The initial step for both methods are the same.
First, to form the graph of physical states, a human plays
the game and the sequences of actions they take and the
corresponding changes in game state are recorded. The
methods then diverge.

4.1. Graph of physical states - Method 1
The first method to map out the physical states of the
game is to use the RAM states directly1. We encode the
RAM by looking at every 4-bit nibble, which corresponds

1Source code is available at tinyurl.com/39hcsp49

tinyurl.com/39hcsp49


to the way many variables are stored within the game.
Each nibble can take one of 16 values, which we one-hot
encode. We remove the lowest-entropy nibbles across
our set of playthroughs, retaining 941 features as a result.
We then apply k-means clustering to obtain 1600 cluster
centers, which are used to form the nodes of our game
graph. The edges are made by observing all transitions
between nodes that happened during our playthroughs.

4.2. Graph of physical states - Method 2
Using raw RAM to form the metric space for clustering
has a number of problems. There are certain highly im-
portant bits (whether particular power-ups have been
collected) which should determine whether a link can or
cannot be traversed, but these features contribute only a
small amount to the distance relative to things like full
screen re-arrangements or the passive movement cycles
of hazards.

To counteract this problem, we train a neural network
to take as input pairs of RAM states that occur within
the same playthrough, and give as output the probability
distribution over their temporal distance in number of
actions2. The penultimate 256d layer is used as an em-
bedding vector, after which we again perform k-means
clustering.

4.3. Mental link learning
The existence of a physical state bottleneck through
which play must pass to reach some new set of states
appears to be a kind of door-opening state, but it does
not conform well to the idea of discovering ‘ways to do
things’ that we would see in a more evolutionary open-
endedness context. That is to say, there’s a difference
between something that attains a specific physical state
in the world that creates new opportunities, and some-
thing that learns what is necessary to reliably attain that
state. We would like to see if we can use our physical
state graph in conjunction with a learning process in
order to detect which physical bottlenecks might corre-
spond also to mental bottlenecks, or to see if there may
even be mental bottlenecks with no localized physical
realization.
To do this, we make use of the idea of a world model

[14], which predicts subsequent RAM states given cur-
rent RAM state and action. We would like to use this as a
proxy for discovery of ‘how to’ do something — the how-
to comes from the human playthroughs, but we require
the model to accurately predict the consequences of all
actions taken along those trajectories. From this require-
ment and the current state of the model, we obtain a set
of game states that are accessible from the starting state.

2Source code is available at tinyurl.com/5f2ptmv2

The transitions starting from these accessible states are
used as the data set for the next step of training the world
model.
We can then look at the dynamics of how the set of

accessible states changes as the model is trained, and
see whether there are plateaus in training (difficult links
or sets of links) that would correspond to bottlenecks.
We can also see whether what is being learned is local
to the accessible states, or if the model learns to predict
unseen links elsewhere in the game. Finally, it can be
interesting to compare multiple training runs to see if
certain sets of links are consistently learned or fail to be
learned in a correlated manner, representing something
like an eigenskill.

This analysis is very dependent on the learningmethod
and architecture of the world model, and so it can at
best illuminate things which may correspond to mental
bottlenecks (unlike a physical state analysis in which
there is some ground truth about whether something
actually is or isn’t a bottleneck).

5. Case Study: BlobQuest
BlobQuest is an NES homebrew game created by Tom
Livak3. It is essentially a metroidvania game wherein the
player must collect rubies (which will allow the player
to return to human form from blob form) while avoiding
obstacles and navigating platforming levels. Importantly,
the player can collect power-ups that imbue the blob with
new abilities, enabling the exploration of new parts of
game levels.

Figure 3 shows a plot of physical game states generated
via Method 1, and Figure 4 shows physical game states
generated via Method 2. Viewing screenshots allows
us to verify hypotheses about what certain topological
features in the graph correspond to. For instance, short
cycles (i.e. two nodes connected via bidirectional links)
might correspond to quick instances of backtracking. Al-
ternatively, a more likely explanation is that certain game
features such as an enemy moving back and forth on the
screen (while the player might even be standing still)
can cause repetitive changes in RAM, resulting in small
cycles on the graph. Longer paths likely correspond to
relatively longer play sequences that don’t involve as
much backtracking. Nodes with high degree might cor-
respond to hubs in the game, where the available paths
are determined by what power-ups the player possesses.
Figure 5 shows the mental link learning correspond-

ing to Figure 3 (physical graph Method 1), and Figure 6
shows the mental link learning corresponding to Figure
4 (physical graph Method 2).

3BlobQuest is used with permission from Tom Livak.

tinyurl.com/5f2ptmv2


Figure 3: Graph of physical game states in BlobQuest, Method 1, 1600 nodes. The topology of the graph is determined
via human gameplay; actions are recorded along with corresponding changes in RAM and then k-means clustering is used
to group the game states into clusters. Links are formed between nodes when a player action leads from one game state to
another. Red links are unidirectional (indicating no backtracking, or irreversibility) and black links are bidirectional.

6. Discussion
Successful video game play is a function of both an agent
(the player) and its environment (the game). Static anal-
ysis of just the game levels (such as in VGLC [15]) does
not afford us what we want to examine because of the
complex relationship between environment and agent,
which form a coupled system. For instance, tall pipes in
the NES game Super Mario Bros. only present a bottle-
neck because Mario must figure out how to jump high (a
cognitive skill) in order to overcome them. The difficulty
of tall pipes is not inherent to the pipes themselves, but
is relative to Mario’s embodiment and abilities.
This paper presented a case study of an initial foray

into automatically analyzing the open-endedness of sim-
ple video games. It is important to note that the current

method is sensitive to a number of parameters and de-
sign decisions. For example, changing the number of
clusters created by the clustering algorithm will affect
the density of the generated graph, with fewer clusters
increasing legibility (because the graph itself is less clut-
tered) but decreasing the degree to which links map to
human-interpretable changes in play.

The eventual goal of this work is to fully automate the
game analysis process instead of relying on human game-
play to generate graphs of physical states. Preliminary re-
search explored the possibility of using a modified Monte
Carlo tree search to play the game, and while this ap-
proachworked for some games, themodifiedMCTS agent
was not able to play BlobQuest well. The high amount of
backtracking needed to successfully play Blobquest may
explain this outcome, and games with less backtracking



Figure 4: Graph of physical game states in BlobQuest, Method 2, 1600 nodes.



Figure 5: Progression of link learning for the 1600-node graph in Figure 3. Black links are links that are correctly
predicted and connected to some state that is accessible to already-predicted states. Blue links are links that are correctly
predicted but not connected to an accessible state (showing generalization).

Figure 6: Progression of link learning for the 1600-node graph in Figure 4. As above, black links are links that are
correctly predicted and connected to some state that is accessible to already-predicted states and blue links are links that are
correctly predicted but not connected to an accessible state.

may be possible to analyze fully automatically.
An open question is whether there exist door-opening

states that don’t correspond to bottlenecks or vice versa.
Additionally, future work will explore different represen-
tations for game topology. For example, one possibil-
ity might be to represent the game states as a manifold
rather than a graph. Other future work could explore
more formally how cognitive bottlenecks are formed and
detected.

References
[1] J. Juul, The open and the closed: Games of emer-

gence and games of progression., in: Computer
Games and Digital Cultures Conference Proceed-
ings, Tampere University Press, 2002.

[2] M. Cook, Tutorial: Generative & possibil-
ity space, https://www.possibilityspace.org/
tutorial-generative-possibility-space/, 2019.
Accessed: 08-03-2022.

[3] T. Taylor, Evolutionary Innovations and Where
to Find Them: Routes to Open-Ended Evolution
in Natural and Artificial Systems, Artificial
Life 25 (2019) 207–224. URL: https://doi.org/
10.1162/artl_a_00290. doi:10.1162/artl_a_00290 .
arXiv:https://direct.mit.edu/artl/article-
pdf/25/2/207/1896728/artl_a_00290.pdf .

[4] H. P. de Vladar, M. Santos, E. Szathmáry, Grand

views of evolution, Trends in Ecology & Evolution
32 (2017) 324–334.

[5] M. A. Boden, Creativity and alife, Artificial Life 21
(2015) 354–365.

[6] W. Banzhaf, B. Baumgaertner, G. Beslon, R. Doursat,
J. A. Foster, B. McMullin, V. V. De Melo, T. Miconi,
L. Spector, S. Stepney, et al., Defining and simulat-
ing open-ended novelty: requirements, guidelines,
and challenges, Theory in Biosciences 135 (2016)
131–161.

[7] T. Taylor, M. Bedau, A. Channon, D. Ackley,
W. Banzhaf, G. Beslon, E. Dolson, T. Froese, S. Hick-
inbotham, T. Ikegami, et al., Open-ended evolution:
Perspectives from the oee workshop in york, Arti-
ficial life 22 (2016) 408–423.

[8] S. A. Kauffman, The adjacent possible,
https://www.edge.org/conversation/stuart_
a_kauffman-the-adjacent-possible, 2003. Accessed:
08-03-2022.

[9] I. Bogost, The rhetoric of video games, in: K. Salen
(Ed.), The Ecology of Games: Connecting Youth,
Games, and Learning, The John D. and Catherine T.
MacArthur Foundation Series on Digital Media and
Learning, The MIT Press, Cambridge, MA, 2008, p.
117–140.

[10] T. D. Kulkarni, A. Saeedi, S. Gautam, S. J. Gersh-
man, Deep successor reinforcement learning, arXiv
preprint arXiv:1606.02396 (2016).

[11] M. C. Machado, M. G. Bellemare, M. Bowling, A

https://www.possibilityspace.org/tutorial-generative-possibility-space/
https://www.possibilityspace.org/tutorial-generative-possibility-space/
https://doi.org/10.1162/artl_a_00290
https://doi.org/10.1162/artl_a_00290
http://dx.doi.org/10.1162/artl_a_00290
http://arxiv.org/abs/https://direct.mit.edu/artl/article-pdf/25/2/207/1896728/artl_a_00290.pdf
http://arxiv.org/abs/https://direct.mit.edu/artl/article-pdf/25/2/207/1896728/artl_a_00290.pdf
https://www.edge.org/conversation/stuart_a_kauffman-the-adjacent-possible
https://www.edge.org/conversation/stuart_a_kauffman-the-adjacent-possible


laplacian framework for option discovery in rein-
forcement learning, in: International Conference
on Machine Learning, PMLR, 2017, pp. 2295–2304.

[12] J. Osborn, A. Summerville, M. Mateas, Automatic
mapping of nes games with mappy, in: Proceed-
ings of the 12th International Conference on the
Foundations of Digital Games, 2017, pp. 1–9.

[13] J. C. Osborn, A. Summerville, N. Dailey, S. Lim, Map-
pyland: fast, accurate mapping for console games,
in: Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertain-
ment, volume 17, 2021, pp. 66–73.

[14] D. Ha, J. Schmidhuber, Recurrent world models
facilitate policy evolution, Advances in neural in-
formation processing systems 31 (2018).

[15] A. J. Summerville, S. Snodgrass, M. Mateas, S. O.
n’on Villar, The vglc: The video game level corpus,
Proceedings of the 7th Workshop on Procedural
Content Generation (2016).


	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	4.1 Graph of physical states - Method 1
	4.2 Graph of physical states - Method 2
	4.3 Mental link learning

	5 Case Study: BlobQuest
	6 Discussion

